
ALGORITHMS FOR RUN TIME TERRAIN
DEFORMATION

STATUS REPORT

SBIR Phase II Contract FA8650-05-C-6537 Topic AF04-064 Sep. 8, 2005
Prepared for AFRL/HEAE, Air Force Research Laboratory
Attn: Steve Stephens, 6030 South Kent Street, Mesa, AZ 85212-6061
Tel: (480) 988-6561 ext. 146 e-mail: steve.stephens@mesa.afmc.af.mil

Prepared by Computer Graphics Systems Development Corp.
Attn: Roy Latham, 2483 Old Middlefield Way #140, Mtn. View CA 94043
Tel: 650-903-4922 Fax: 650-967-5252 e-mail: rwl@cgsd.com SkypeID: rlatham001

Project Abstract

The goals of Phase II are to develop and implement algorithms for a real
time mission rehearsal simulation which will deform the terrain database to
match target data. A correction function c(x,y) that is added to every vertex
in view. The correction function must (1) adjust the terrain surface to meet
the specified features, (2) appear smooth and continuous so that the
adjustments appear natural, and (3) do not distort aspects of the database
that must be preserved. The implementation is to be in C++ and compatible
with Open Scene Graph. The code will be placed in the public domain in
keeping with an open source philosophy.

ALL DATA CONTAINED IN THIS REPORT IS PROPRIETARY TO CGSD CORPORATION AND
MAY NOT BE DISCLOSED OUTSIDE OF THE US GOVERNMENT WITHOUT PERMISSION OF
CGSD.

• Previously Completed Work

▪The Phase II contract was signed on April 8, 2005 and work started immediately. ▪ A
kickoff meeting was held in May ‘05, and the program plans were reviewed. ▪ Don
Burns, one of the originators of Open Scene Graph was added to the project team.

• Work Accomplished This Reporting Period

This past month was quite productive. Don Burns completed 80% of the software module
for reading shapefiles into Open Scene Graph (OSG). SHAPE is a standard format
developed by mapping community for representing graphs objects, including point, line,
and polygonal data. We have selected SHAPE as the format for importing target data into
the dynamic terrain system. The main database would be modified in real time to match
the target data in the shapefile.

Status Report, Algorithms for Run Time Deformation of Terrain, page 1

mailto:rwl@cgsd.com
mailto:steve.stephens@mesa.afmc.af.mil

CGSD had written a shapefile reader for a previous project, however it was written using
the Microsoft standard object classes in C++. Don rewrote the code to eliminate the
proprietary dependence, and also to interface it to OSG.

The completed shapefile input module for OSG will be posted to the OSG website for
public use as soon as testing is complete.

Separately, P.Y. has updated the program description language (PDL) drafts for the terrain
algorithms and the for the standalone program that will be used to test implementations of
the algorithms. These were originally drafted in Phase I and are now needed as the basis
for the next phase of implementation.

The revised versions are presented below.

Complete the first draft of PDL
—Software design in Program Design language

This month we completed a draft of PDL for the software design that (1) has linked Open
Scene Graph (OSG) with the terrain correction, (2) has taken into consideration of layers
of database, (3) has taken into consideration of classified tiles on a layer. The PDL code is
included in this report.

Assumptions

1. A list of targets is given at the time when a datablock is retrieved.
2. A datablock is composed of one or more databases.
3. A database is layered.
4. Each layer of a database is tiled, and some tiles have classified information.
5. Classified tiles are considered more accurate than the corresponding non-classified tiles.
6. Layers of a database include terrain layer, cultural layer, special feature layer, and targetable
feature layer.

OSG Interface

Terrain Correction or Deformation module is to be an Open Scene Graph (osg) plug-in.
Get_Datablock

If a file is an Openflight file
OSGread_openflight_file
OSGparse_openflight_file
Main

Else if a file is a Shapefile
OSGread_shapefile
OSGparse_shapefile
Main

Endif
End Get_Datablock

Status Report, Algorithms for Run Time Deformation of Terrain, page 2

Terrain Correction or Deformation

Main-
For each datablock of concern
For each database of the datablock

If a layer is a terrain layer, then
For each target T on the list of targets for the datablock of concern

Calculate the height differences of vertices of the target
(Cal_Height_Diff(T))

Find the maximal height difference, say H (Cal_HeightDiff_Max(T))
If H is not zero

Place the target in a new list of target-need-
correction(Add_To_TNClist)

Endif
Endfor

Group targets on the new list of target-need-correction (Target_Group(list))
For each group G of targets-need-correction

Determine the Gaussian correction function (Cal_A(G)) (Cal_B(G))
(Cal_R(G))
Correct the heights of terrain points around the target accordingly
(Correct_Height)
Record the correction into the terrain patch

Endfor
Treat level of details issue (LOD_treatment)
Retrieve neighboring datablocks if necessary

Endif

Endfor

Endfor

End Main

Cal_Height_Diff(T) –Calculates the difference of heights between a vertex of the target T and its
corresponding terrain point

Do for each vertex of the target T
Say the vertex’ coordinate is Xt, Yt, Zt
Identify the tile the vertex is in, say tile TILE(I,J)
If TILE(I,J) has a corresponding classified tile, then

Use the classified tile CTILE to
Find the corresponding terrain point Xt, Yt, Z (interpolate if exact
Xt, Yt not found)

Else
Use tile TILE to
Find the corresponding terrain point Xt, Yt, Z (interpolate if exact Xt, Yt
not found)

Endif
Diff= Zt – Z for the vertex

Enddo
End Cal_Height_Diff

Status Report, Algorithms for Run Time Deformation of Terrain, page 3

Cal_HeightDiff_Max(T) – Calculates the max of the height differences for a target
Set Maxdiff = 0
Do for each vertex of a target

Take absolute value of the height difference for the vertex, abs(hightdiff)
Max diff = max(Maxdiff, abs(heightdiff))

Enddo
End Cal_HeightDiff_Max

Add_To_TNClist – Adds a target to the list of Target Need Correction
Assign the pointer for the TNClist to the target

End Add_To_TNClist

Target_Group(list)– Groups targets of a given list using some predetermined parameter(s), for
example, distance D
For a group G

Select a target as the base target, and call the group for the base target G1
Do for each target

Calculate distance between the base target and the target
If the distance is greater than D

Place the target into group G2
Else

Place the target into the same group as G1
Endif

Enddo
Use G2 as a new group G, repeat the process

Endfor
End Target_Group

Cal_A(G) – Calculates a for the Gaussian function for a group G of targets
A = max of the pairwise distance among targets in the group G, for example

End Cal_A

Cal_B(G) – Calculates b for the Gaussian function for a group G of targets
B = max of height differences of targets in the group G, for example

End Cal_B

Cal_R(G) – Calculates r for the Gaussian function for a group G of targets
R = diameter of the circular hull for the group G of targets

End Cal_R

Correct_Height(G) – Correct the terrain that found mismatch with the targets in group G
Do for each terrain point fall in the area defined by the Gaussian function

Add the Gaussian correction value to the height
Enddo

End Correct_Height

Status Report, Algorithms for Run Time Deformation of Terrain, page 4

LOD_treatment – Provides Level of Details treatment
Generate level 1 terrain patch by combining 2 pixels
Generate level 2 terrain patch by combining 4 pixels
Generate level 3 terrain patch by combining 8 pixels
Generate level 4 terrain patch by combining 16 pixels

End LOD_treatment

Synthetic Test Database Generation

Build_Terrain_Array (N,A)

Builds an N x N array of synthetic terrain elevation data. N is a power of 2. Each point in
the array is the elevation of the terrain in feet at that point. The data is random with the
special frequencies having a spectrum that falls proportional to the frequency. The lowest
frequency has a magnitude of 1000 feet.

Check if N is a power of two.
Set all the values in the array to zero.
Compute Number_of_Iterations = log2 (N). so a 32 x 32 array will take 5 passes
For MPASS = 0 to Number_of_Iterations – 1
Initialize A = 1000
Pick four random numbers R1, R2, R3, R4
Fill_Terrain_Square (0, A, 0, 0, N, R1, R2, R3, R4)

END Build_Terrain_Array

Fill_Terrain_Square (MPASS, A[N, N], LLx, Lly, M, R1, R2, R3, R4)

This adds higher frequency data to an M x M subgrid within an existing N x N array A of
terrain gridposts. R1 .. R4 are four random numbers. The x,y coordinates of the lower left
corner of the subgrid is LLx, Lly. MPASS controls the frequency of the noise added to
the grid, with finer subdivision on each pass.

Check if N is a power of two and MPASS > 1

If M is < 2 then RETURN

URX = LRX + M
URY = LRY + M

Scale the four random numbers R1, R2, R3, R4 so each in the range - 500/(2**MPASS)
to +500/(2**MPASS)

Status Report, Algorithms for Run Time Deformation of Terrain, page 5

Compute the plane parameters for the triangle in the upper right

R1----R2
| /
R3

DXU = (R2 – R1)/M
DYU = (R3 - R1)/M

Compute the parameters for the triangle in the lower right

 R2
 / |
R3----R4

DXL = (R4 – R3)/M
DYL = (R2 – R4)/M

FOR IY = 0 TO M-1
FOR IX = 0 TO M-1

IF IX < IY THEN A(LRX+IX,LRY+IY) += R3 + DXU*IX + DYU*IY
ELSE A(LRX+IX,LRY+IY) += R3 + DXL*IX + DYL*IY

END for IX
END for IY

Divide the Array into four subgrids. Pick 9 random numbers S1 .. S9. They define the
values at the corners of the four subgrids as follows:

S1 +++ S2 +++ S3
S4 +++ S5 +++ S6
S7 +++ S8 +++ S9

Fill each of the subgrid using MPASS<=MPASS + 1
N2 = (URX – LLX)/2
Fill_Terrain_Square (MPASS, A[N, N], LLx, Lly, N2, S7, S5, S4, S8)
Fill_Terrain_Square (MPASS, A[N, N], LLx, Lly+N2, N2, S4, S2, S1, S5)
Fill_Terrain_Square (MPASS, A[N, N], LLx+N2, Lly+N2, N2, S5, S3, S2, S6)
Fill_Terrain_Square (MPASS, A[N, N], LLx+N2, Lly, N2, S8, S6, S5, S9)
End Fill_Terrain_Square

Correct_Terrain (N, A, F, T)

A is the N x N array of terrain gridposts
F is the correction function
T is the vector containing NT target points

This routine adds the correction function to the terrain grid posts.

Status Report, Algorithms for Run Time Deformation of Terrain, page 6

FOR IX = 0, N
FOR IY = 0, N

A(IX, IY) += F(IX,IY, T)

END for IY
END for IX

End Correct_Terrain

Display_Terrain (N, A)
A is the N x N array of terrain gridposts. Scale 300 feet
V1, V2, V3, V4 are 3D vertices, each with (x, y, x) coordinates.

Set the viewpoint so as to see the terrain in perspective. Put the eye point at (-100000,
-100000, 2000). Looking along the diagonal.

Set the window matrix to 40 x 50 degrees

Initialize the OpenGL pipeline for green terrain triangles with 20% ambient and 80%
direct sun from 60 degrees above the north horizon

Display two 3D triangles for each gridpoint, the two triangles to the upper right.

For IX = 0, N-1
For IY = 0, N-1

Scale up IX by SCALE
V1 = IX, IY, A(IX, IY)
V2 = IX, IY+1, A(IX, IY+1)
V3 = IX+1, IY+1, A(IX+1, IY+1)
V4 = IX+1, IY, A(IX+1, IY)
Display_Triangle (V1, V2, V3)
Display_Triangle (V1, V3, V4)

End for IY
End for IX

End Display_Terrain

Display_Point (V)
Define as constants the six points that define an up-tetrahedron conjoined with a down-
tetrahedron. The top vertex is V1, the bottom vertex is V2, and V2 through V5 surround
the point.

V1 = (0,0,1)
V2 = (-1,-1,0)
V3 = (-1,1,0)

Status Report, Algorithms for Run Time Deformation of Terrain, page 7

V4 = (1,1,0)
V5 = (1,-1,0)
V6 = (0,0,-1)

Display a point, such as a target point, on the screen

Set the color to red.

Scale the x, y coordinates with SCALE

Display_Triangle (V+V1, V+v2, v+v3)
Display_Triangle (V+V1, V+v3, v+v4)
Display_Triangle (V+V1, V+v4, v+v5)
Display_Triangle (V+V1, V+v5, v+v1)
Display_Triangle (V+V6, V+v3, v+v2)
Display_Triangle (V+V6, V+v2, v+v5)
Display_Triangle (V+V6, V+v5, v+v4)
Display_Triangle (V+V6, V+v4, v+v3)

End Display_Point

Display_Triangle (V1, V2, V3)
V1, V2, V3 are 3D vertices, each with (x, y, x) coordinates.
Display_Line (V1, V2)
Display_Line (V2, V3)
Display_Line (V3, V1)

END Display_Triangle

Main_TestDatabase

Get the parameter, N for the grid size, the number of targets
Get an integer IRAND to seed the random number generator
Initialize the random number generator
Clear the screen
Draw a 2-D box and fill it with a blue background
Print the name of the company, the program, the date, the time, and N as a caption
Build_Terrain_Array (N,A)
Generate the targets points T
Display_Terrain (N, A)
For each T(i) Display_point(Ti)

Ask (What correction function?) get (Function Number) and a function parameter
Write the function selected in the caption
Correct_Terrain (Function Number, T)
Display_Terrain
For each T(i) Display_Point(Ti)

Status Report, Algorithms for Run Time Deformation of Terrain, page 8

Wait for space bar to continue with a new parameter or Q to quit

END Main_TestDatabase

• Summary of Status

The project is on schedule. The status of tasks is summarized below:

ID Description 9/8/0
5

Task 1 Research & verify the timeliness of the full-scale
Algorithm/technique

90%

Task 2 Verify the accuracy of the full-scale algorithm or
technique

60%

Task 3 Design, code and test the full-scale algorithm 30%

Task 4 Develop a web site for the release of open source
code 30%

Task 5 Examine the compatibility of the open source
code with the existing IG hardware 0%

Task 6 Demonstrate the prototype 0%

Task 7 Write Interim Report(s) 20%

Task 8 Write Final Report and Summary Report 0% 0%

• Problems

No significant problems or information that might impact schedule have been
encountered in this reporting period.

• Interim Results

There are no interim results to report in this period.

• Recommendations and Proposals

There are no recommendations or proposals as a result of efforts in this reporting period.

• Summary of Future Plans

We expect to complete the shapefile reader in the coming month, and to post it on the
web for public use. Implementation of the standalone test program will then be started.

Status Report, Algorithms for Run Time Deformation of Terrain, page 9

