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The problem is to adjust the elevation of a terrain database so that it will smoothly fit a 
set of newly described targets. Targets t1 …tn are geometric objects described by a set of 
polygons, with some of the polygons in contact with the terrain. Targets may be point 
features described by a single coordinate (xi, yi, zi), lineal features described by a 
connected sequence of points, or areal features described by a set of polygons defining 
the area in contact with the terrain.

The approach adopted here is to define a correction function C(x,y) such that when the 
correction function is added to every corresponding point of the terrain in the original 
database, the result will exactly conform to the targets and will vary naturally between 
targets. If there is a point target above the flat surface of the original database, for 
example, the correction function will provide a hill of the correct height to match the 
target. 

Correction Space Meshing

The correction function is defined on the same x,y space as the original database. The first 
step in defining the correction function is to triangularize the correction function space 
with respect to the target coordinates. For example, if there are three point target in the 
space:

The corner vertices of the database area are included, so that the entire space is 
triangularized. The case of three point targets produced eight triangles in the 
triangularization shown. The triangularization is not unique. 

There are published triangularization algorithms, also known as meshing algorithms. A 
well developed software set is given at http://www.cs.cmu.edu/~quake/triangle.html
A survey of literature on the subject is given at 
http://www.andrew.cmu.edu/user/sowen/mesh.html

The correction function can now be defined with respect to each triangle in the meshed 
correction function space. The value of the correction function at each target vertex is 
defined by the target locations and the original terrain. The correction at the ith target 
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vertex is C(xi,yi) = ai = zi – T(xi,yi),   where T(x,y) is the elevation of the original terrain at 
x,y. This asserts that the target elevation is always assumed to be correct and is 
unchangeable.

One possible correction function is that obtained with linear interpolation between the 
values at the vertices. The target vertices are all specified, and the vertices at the corners 
of the database area could be assumed to be zero. The linear function would work well if 
the corrections to the database were small. If the corrections are large, however, then the 
corrections could produce new long, unnatural, ridge lines and other abrupt changes.

Gaussian Hills and Valleys

To soften the impact of the changes we will instead create a hill or valley just in the 
neighborhood of each target point.  For the ith target vertex, we define

fi(x,y) = ai * exp[- d2/k2ai
2]  where d2 = (x-xi)2 +(y-yi)2  and k is a slope constant, nominally 

4. Increasing k makes the hills more gradual.

Each point within a triangle of the correction space has correction made of the weighted 
sum of three correction function values at that point,

C(x,y) = w1f1(x,y) + w2f2(x,y) + w3f3(x,y)           (x,y) within the triangle [t1,t2,t3]

The weights must have certain properties. At the vertices, the weight of the corresponding 
influence function must one and the other two zero, otherwise the elevation of the target 
coordinate would not be preserved. Also, along the lines connecting each pair of vertices, 
the weight of the influence of the third vertex must be zero. That is required to ensure that 
correction along the adjacent edge of the adjopining triangle matches exactly, and 
cracking is thereby prevented.

The required properties are obtained by interpolating the weights linearly. Start by sorting 
the vertices in y order,

For y > y2, compute the fractions of the distances down the left and right edges,

w13 = (y1 – y)/(y1 – y3),        w31 = 1 – w13

w12 = (y1 – y)/(y1 – y2),        w21 = 1 – w12

The fraction of the x-distance across the triangle is then computed from
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s13 = (y1 – y)/(x1 – x3),        s12 = (y1 – y)/(x1 – x2),
x13 = (y1 – y)/ s13                x12 = (y1 – y)/ s12           

u1 = (x13 – x)/(x13 – x12)        u2 = 1 – u1

Which yields the three weights,

w1 = w13 u1 w2 = w31 u2 w3 = w31 u1

for 

C(x,y) = w1f1(x,y) + w2f2(x,y) + w3f3(x,y)           (x,y) within the triangle [t1,t2,t3]
and y > y2

For the lower part of the triangle, y ≤ y2

w13 = (y1 – y)/(y1 – y3),        w31 = 1 – w13

w23 = (y2 – y)/(y2 – y3),        w32 = 1 – w23

s13 = (y1 – y)/(x1 – x3),        s23 = (y2 – y3)/(x2 – x3),
x13 = (y1 – y)/ s13                x23 = (y2 – y)/ s23           

u1 = (x13 – x)/(x13 – x23)        u2 = 1 – u1

w1 = w13 u1 w2 = w23 u2 w3 = w32 u2

and 

C(x,y) = w1f1(x,y) + w2f2(x,y) + w3f3(x,y)           (x,y) within the triangle [t1,t2,t3]
and y ≤ y2

Special Cases

Above, we assumed that the three points were from different targets. If all three points are 
from the same target, the three influence functions should be set to one for that triangle. 
That will keep the terrain in flat facets so it will match the target, which we assume was 
modeled with polygons.

If two of the points are from the same target and the third from a different target, there is 
a potential for discontinuity near the target edge. To prevent cracking, use linear 
interpolation to obtain the correction function for points on the edge. Points in the interior 
of the triangle near the edge may have discontinuous values, but there won’t be cracking. 
At worst, there would be a nearly-vertical wall near the edge of the target, matching the 
polygonal target to the approximately smooth terrain.

To complete the triangularization of the correction space we include the four corner 
points of the database. We could assign zero correction to those points, but in will provide 



better continuity if a value is assigned that is reasonable for nearby corrections. We can 
select the three nearest target points near the corner vertex and assign the value of  f1(x,y) 
+ f2(x,y) + f3(x,y) to the correction. The sum of the three influence functions can then be 
used as the influence function for the corner point.

Creating New Vertices

After the correction function is defined it may be applied to each of the existing vertices 
in the original terrain. However, there may not be enough vertices in the terrain to 
accurately represent the smooth hills and valleys created by the influence functions.  To 
fully modify the terrain, each of the original polygons, and any new polygons created by 
adding the targets, should be tested and subdivided if necessary.

A test is performed on each edge of each triangle in the terrain database. The test is 
performed in the terrain database, not the triangularization of the correction function 
space. The test is to check if the existing straight edge is a good approximation to the 
underlying terrain, or whether a a vertex should be added to allow a closer fit to the 
intended terrain.

For each of the three edges of each terrain triangle, check if

| [C(xi,yi) – C(xj,yj)]/2 – C([xi – xj]/2, [yi – yj]/2) |  <  εT   

where εT is a constant that determines the accuracy of the polygon fit, nominally 1.5 feet.

If any of the three edges fails the test, the terrain triangle must be subdivided into four 
triangles by connecting the midpoints of each edge. If none fail, the triangle is left alone.

If the triangle is subdivided, the process is then repeated on each of the four subtriangles. 
Eventually, the triangles will be small enough to adequately approximate the surface.

An Efficiency

The Gaussian curve used for the influence function falls to zero for large distances. If d > 
6k, the value of the influence function can be taken to be zero.  If there are only a 
relatively few targets in a large database, which generally is the case, then processing can 
be speeded up by excluding all the terrain that is outside of any influence function region.



One way to do this is to construct a square region of possible influence around each 
target. If the target is a point, then compute k for the point and define the target region as 
the square bounded by (xt – 6k) < x < (xt + 6k) and (yt – 6k) < y < (yt + 6k). If the target is 
a lineal or areal feature, then find the minimum x and y, the maximum x and y, and the 
maximum k for the set of vertices in the target. The boxed region potentially affected by 
the target is then (xtmin – 6kmax) < x < (xtmax + 6 kmax) and (ytmin – 6 kmax) < y < (ytmax + 6 kmax).

The influence bounds can be computed and kept with a list of the targets. When an area 
block is read in, the area block boundaries can be tested against the target list and the 
targets found to potentially influence the block marked for use within the block. If 
nothing in the block can be modified, then all of the terrain processing can be skipped. If 
something in the block is potentially modified, then only the marked targets need be 
considered in the influence function calculations.

The influence regions can also be used for finer tests, such as on a cluster, object, or 
polygon basis.


